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This work considers the addition of damping to a beam system in order to limit the
response due to random-in-time forcing functions. Here the optimization process for such
dissipative attachments will use as an objective function the spatial average of the mean
square response over the extent of the beam. It is shown here that optimal dampers and
damped vibration absorbers can be found which minimize this objective function.
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1. INTRODUCTION

This work considers the forced random vibration of a cantilever beam with either a
viscous damper or a damped dynamic vibration absorber attached at the tip to
provide energy dissipation to suppress the randomly excited motions. The theory
developed is quite general and is applicable to a variety of other distributed systems to
which lumped parameter dissipation has been added. There is a considerable literature of
the dynamics of modified distributed parameter systems first explored in the work of
Duncan [1]. Duncan coined the term admittance that was later changed to receptance in
the excellent book of Bishop and Johnson [2]. In the past five decades there have been
many papers on the forced and free vibration of modified systems [3–9]. More recently,
several investigators have considered the random vibration of such modified systems
[10–13].

Several recent papers [14, 15] have explored the incorporation of damping in distributed
parameter systems to suppress random vibrations due to stationary random forcing
functions. The first of these works [14] explored the application of a lumped damper and a
damped dynamic absorber at the tip of a cantilever beam. The application of the tip
damper was shown to limit the mean square response of the tip to any desired degree, but
in doing so caused other locations on the beam to exhibit excessive vibration. As the
damper became infinitely viscous, the motion of the tip became vanishingly small while
beam supports approached the clamped–supported condition. A damped vibration
absorber at the beam tip was shown to minimize the mean square tip vibrations at the
expense of other points on the beam.

The second work [15] explores the use of damped dynamic vibration absorbers to
suppress randomly forced oscillations in a simply supported rectangular plate. It was
shown that for an absorber with a given mass ratio and tuning ratio an optimal damping
ratio could be found so as to minimize the mean square vibration of the point at which the
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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absorber is attached. As in reference [14] this optimization did not consider the motion of
other points on the plate. It is clear that for any lumped parameter attachment to be truly
effective in vibration suppression, points other than the point of attachment must be
considered in the measure of vibration suppression effectiveness.

In this paper, the spatial average mean square motion is proposed as an objective
measure of the best vibration suppression scheme. It will be shown that this measure will
result in an optimal damper value or an optimal vibration absorber each applied at the tip
of a cantilever beam. Although the results are presented here for a cantilever beam, the
theory could be extended to other beam, plate or shell configurations.

2. DEVELOPMENT OF THE THEORY

2.1. TRANSFER FUNCTIONS

The system of interest here is the cantilever beam driven by a distributed load
that is uniform in space and stationary and random in time with a damper or dynamic
vibration absorber attached at the tip as illustrated in Figure 1. The transfer function
between the point force applied at the tip by the damper or dynamic absorber and
the motion of a point at location x [14] for a beam of length L and mass per unit length
rA is

G1ðsÞ ¼
Yðx; sÞ

PðsÞ ¼
X1
i¼1

fiðLÞfiðxÞ
rALðs2 þ o2

i Þ
: ð1Þ

The transfer function between the uniform applied force w(t) and the motion of a point x

is [14]

G2ðsÞ ¼
Yðx; sÞ
WðsÞ ¼

X1
i¼1

2aifiðxÞ
biLrAðs2 þ o2

i Þ
: ð2Þ

In these equations the fiðxÞ are the cantilever beam characteristic functions tabulated by
Young and Felgar [16], ai is a constant from the characteristic function and oi is the ith
radian natural frequency of the beam and biL is the ith root of the beam characteristic
Figure 1. Cantilever beam with a uniform random-in-time forcing function with either a tip damper or a tip
mounted dynamic vibration absorber.
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equation. The transfer function between the driving force and the motion of the point
x ¼ L in the presence of the attached damper or dynamic absorber is [14]

MðL; sÞ ¼ YðL; sÞ
WðsÞ ¼ G2ðL; sÞ

1þ G1ðL; sÞHðsÞ; ð3Þ

and that for any point x along the beam it is

Mðx; sÞ ¼ Yðx; sÞ
WðsÞ ¼ G2ðx; sÞ � G1ðx; sÞHðsÞMðL; sÞ; ð4Þ

where the Giðx; sÞ are as specified above and HðsÞ is the displacement driving point
impedance of the mechanical element(s) attached at the tip. For an attached damper, the
displacement driving point impedance is

HðsÞ ¼ bs ð5Þ
and for an attached dynamic absorber the driving point impedance is

HðsÞ ¼ ms2ðbs þ kÞ
ms2 þ bs þ k

: ð6Þ

2.2. SPATIAL AVERAGE MEAN SQUARE MOTION

For a zero mean stationary random forcing function, the mean square motion at a
location x on the beam is given by

s2yðxÞ ¼
1

2p

Z 1

�1
Mðx; joÞj j2SwðoÞ do: ð7Þ

Note that this is a function of x. If all points along the beam are of equal importance then
the simplest possible gross measure of response is the spatial average of the mean square
motion over the length of the beam or

s2 ¼ 1

2pL

Z L

0

Z 1

�1
jMðx; joÞj2SwðoÞ do dx: ð8Þ

Once the tuning ratio (the ratio of the absorber undamped natural frequency to the first
natural frequency of the beam) and mass ratio are selected it will be shown in the cases
investigated here that s2 can be minimized with respect to the dissipative system
parameters.

2.3. FREQUENCY-SCALED TRANSFER FUNCTIONS

Let us scale the frequency variable by first scaling the complex s-domain variable in the
various transfer functions by letting s ¼ o1p so the various transfer functions previously
defined are

G1ðx; pÞ ¼ 1

rALo2
1

X1
i¼1

fiðLÞfiðxÞ
p2 þ g2i

ð9Þ

and

G2ðx; pÞ ¼ L4

EI

X1
i¼1

2aifiðxÞ
ðb1LÞ5 ffiffiffiffi

gi

p ðp2 þ g2i Þ
; ð10Þ

where the parameter gi ¼ oi=o1 is the dimensionless ith natural frequency of the beam.
Here extensive use has been made of the relation between the ith radian natural frequency



R. G. JACQUOT958
and the eigenvalue bi or

o2
i ¼ b4i

EI

rA
: ð11Þ

The respective scaled driving-point impedances are

HðpÞ ¼ bo1p ð12Þ

for the damper and for the damped dynamic absorber,

HðpÞ ¼ mo2
1p2ð2zTp þ T2Þ

p2 þ 2zTp þ T2
; ð13Þ

where T ¼ oa=o1 is the absorber tuning ratio with oa ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
; and the damping ratio is

z ¼ b=2
ffiffiffiffiffiffiffi
km

p
:

3. ATTACHED DAMPER

Substituting the quantities from relations (9), (10) and (12) into relation (3) the transfer
function Mðx; pÞ is

MðL; pÞ ¼
ðL4=EIÞ

P1
i¼1 2aifiðLÞ=ðb1LÞ

5 ffiffiffiffi
gi

p ðp2 þ g2i Þ
1þ ðbp=rALo1Þ

P1
i¼1 f

2
i ðLÞ=ðp2 þ g2i Þ

ð14Þ

and further substituting relations (9), (10) and (12) into relation (4), the result is

Mðx; pÞ ¼
X1
n¼1

fnðxÞ
p2 þ g2n

2anðL4=EIÞ
ðb1LÞ5

ffiffiffiffiffi
gn

p � bpfnðLÞ
rALo1

MðL; pÞ
 !

; ð15Þ

where MðL; pÞ is defined by relation (14). The frequency responses associated with the
transfer functions (14) and (15) are given by letting p ¼ jf ; where f is a scaled frequency
variable given by f ¼ o=o1:

The appropriate frequency response functions are

Mðx; j f Þ ¼
X1
n¼1

fnðxÞ
g2n � f 2

2anðL4=EIÞ
ðb1LÞ5 ffiffiffiffiffi

gn

p � jf bfnðLÞ
rALo1

MðL; jf Þ
 !

; ð16Þ

where MðL; jf Þ is given from relation (14)

MðL; jf Þ ¼
ðL4=EIÞ

P1
i¼1 2aifiðLÞ=ðb1LÞ5 ffiffiffiffi

gi

p ðg2i � f 2Þ
1þ ðjfb=rALo1Þ

P1
i¼1 f

2
i ðLÞ=g2i � f 2

: ð17Þ

Then Mðx; jf Þ can thus be written as

Mðx; j f Þ ¼ L4

EI

X1
n¼1

enðj f ÞfnðxÞ
g2n � f 2

; ð18Þ

where enðjf Þ is from relation (16),

enðjf Þ ¼
1

ðb1LÞ5
2an

bnL
ffiffiffiffiffi
gn

p � jfb

rALo1
fnðLÞ

P1
i¼1 2aifiðLÞ=

ffiffiffiffi
gi

p ðg2i � f 2Þ
1þ ðj fb=rALo1Þ

Pr
i¼1 f

2
i ðLÞ=ðg2i � f 2Þ

 !
: ð19Þ
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If the driving force is white noise with power spectral density Sw then the power spectral
density of the motion of any point on the beam is

Syðx; f Þ ¼ SwMðx; jf ÞMðx;�j f Þ: ð20Þ

The spatial average mean square motion is given by expression (7) to be

s2 ¼ Swo1

2pL

Z 1

�1

Z L

0

Mðx; jf ÞMðx;�jf Þ dx df ; ð21Þ

where M(x,jf ) is given by relation (18).
As evidenced by relation (18) both Mðx; j f Þ and Mðx;�j f Þ are generalized Fourier

series in the beam functions fnðxÞand thus the spatial averaging integral of equation (21)
will deal with the averaging of the products of the beam functions. Fortunately, the
beam functions are orthogonal thus reducing the double sum to a single sum using the fact
[17] Z L

0

fnðxÞfmðxÞ dx ¼ Ldmn; ð22Þ

where dmn is the Kronecker delta function. With all these properties noted, the objective
function may be written as

s2ðEIÞ2

Swo1L8
¼ 1

2p

Z 1

�1

X1
n¼1

enðjf Þ
g2n � f 2

����
����
2

df ð23Þ
Figure 2. Dimensionless spatial average motion power spectral density for values of the dimensionless
damping coefficient of C=0
1, 0
2, 0
4, 0
6, 0
8, 1, 2, 3, 4, 5, 6.



Figure 3. Dimensionless spatial average mean square motion as a function of the dimensionless damper
coefficient.
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and from equation (19),

enðjf Þ ¼
1

ðb1LÞ5
2an

bnL
ffiffiffiffiffi
gn

p � CjffnðLÞ
	X1

i¼1
2aifiðLÞ=

ffiffiffiffi
gi

p ðg2i � f 2



	 �
	
1þ Cj f

Xr
i¼1

f2
i ðLÞ=ðg2i � f 2Þ



;

ð24Þ

where the dimensionless damper coefficient is given by

C ¼ b

rALo1
: ð25Þ

The quantity under the integral of expression (23) is the dimensionless average motion
power spectral density function. This function has been evaluated for a sequence of values
of the parameter C and is illustrated in Figure 2. Careful observation of this figure reveals
that as the dimensionless damping coefficient C is increased the first cantilever natural
frequency resonance decreases, but at some point a new resonance associated with the first
mode of a clamped–supported beam begins to grow. An interesting question to be
answered is whether the average mean square motion (which is proportional to the average
power spectral density area) has a minimum for some value of C ? The answer was given
by evaluating the average mean square motion from equation (23) for a range of values



Figure 4. Dimensionless spatial average motion power spectral density for a mass ratio of m ¼ 0
2; a tuning
ratio of unity and values of absorber damping ratio of z=0
05–0
8 in increments of 0
05.
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of C. The spectral density integrals were evaluated using the trapezoidal rule in MATLAB
and the results are given in Figure 3. The number of points and the range of integration
were varied such that there was confidence in the numerical answers given. The series were
also truncated at both four and five terms and the results are not sensitive to the
truncation. It is now clear that a minimum does exist for a value of C near 3.

4. ATTACHED DYNAMIC VIBRATION ABSORBER

Consider the situation where a damped dynamic absorber is attached to the beam tip in
order to provide vibration suppression without an attachment to ground as was the case
for the damper previously considered. The needed transfer functions have already been
presented so substitution of relations (9), (10) and (13) into relation (3) gives

MðL; pÞ ¼
ðL4=EIÞ

P1
i¼1 2aifiðLÞ=ððb1LÞ

5 ffiffiffiffi
gi

p ðp2 þ g2i ÞÞ
1þ mðp2ð2zpT þ T2Þ=ðp2 þ 2zTp þ T2ÞÞ

P1
i�1 f

2
i ðLÞ=ðp2 þ g2i Þ

; ð26Þ

where the mass ratio is m ¼ m=rAL: The transfer function between the applied force and
the motion at any point is

Mðx; pÞ ¼
X1
n¼1

fnðxÞ
p2 þ g2n

2anðL4=EIÞ
ðb1LÞ5 ffiffiffiffiffi

gn

p � m
p2ð2zTp þ T2Þ
p2 þ 2zTp þ T2

	 

fnðLÞMðL; pÞ

 !
ð27Þ



Figure 5. Dimensionless spatial average mean square motion as a function of absorber damping ratio for
various mass ratios with a tuning ratio of unity.
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where MðL; pÞ is defined is defined by relation (26). The respective frequency response
functions are

MðL; jf Þ ¼ ðL4=EIÞ
P1

i¼1 2aifiðLÞ=ððb1LÞ
5ðg2i � f 2ÞÞ

1� mðf 2ðj2zTf þ T2Þ=ðT2 � f 2 þ j2zTf ÞÞ
P1

i¼1 f
2
i ðLÞ=ðg2i � f 2Þ

ð28Þ

and thus as before

Mðx; jf Þ ¼ L4

EI

X1
n¼1

enðjf ÞfnðxÞ
g2n � f 2

; ð29Þ

where the coefficient enðjf Þis defined as

enðjf Þ ¼
1

ðb1LÞ5
2anffiffiffiffiffi
gn

p þ m
f 2ðj2zTf þ T2Þ
T2 � f 2 þ j2zTf

	 

fnðLÞ

MðL; jf Þðb1LÞ5

L4=EI

 !" #
ð30Þ

and where MðL; jf Þ is defined in relation (28). The dimensionless spatial average motion
power spectral density is then

%SSyðf ÞðEIÞ2

SwL8
¼
X1
n¼1

enðjf Þenð�jf Þ
ðg2n � f 2Þ2

: ð31Þ

For a mass ratio of m ¼ 0
2 and a tuning ratio of T ¼ 1 the dimensionless average power
spectral density of motion has been calculated and is illustrated in Figure 4 for several



Figure 6. Optimal absorber damping ratio as a function of mass ratio for a tuning ratio of unity.
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values of dynamic absorber damping ratio. The spatial average motion variance is given
by integration of this function and has been accomplished for a series of values of mass
ratio and damping ratio and the result is illustrated in Figure 5. It is clear that for a given
mass ratio there is a damping ratio that will yield a minimum average mean square
motion. The values of damping ratio that yield a minimum mean square response are
shown as a function of mass ratio in Figure 6. Clearly, there is an optimal damping ratio
for every mass ratio and these values are illustrated in Figure 7. If these minima are
evaluated as a function of mass ratio the minimum occurs at a mass ratio of 0
25 and the
optimal damping ratio for this mass ratio is 0
5. In a practical situation a smaller mass
ratio would probably be employed along with an accompanying smaller damping ratio.
This, of course, would result in a larger average mean square motion.

5. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

Optimal random vibration suppression in distributed parameter systems has been
considered here by attachment of lumped parameter dampers and damped vibration
absorbers to an undamped cantilever beam. The measure of the effectiveness of vibration
suppression used here is the spatial average mean square response. It is shown that optimal
damper and dynamic absorber parameters exist for minimization of the spatial average
mean square motion.



Figure 7. Minimum spatial average mean square motion as a function of mass ratio assuming optimal
damping as presented in Figure 5 for a tuning ratio of unity.
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In the course of this investigation it has become apparent that two additional studies
need to be accomplished to bring closure to the addition of damping to suppress random
vibration in distributed parameter structures. The first is to examine the effect of location
of the damping element on the optimization process. The tip location for the application
of damping elements for a cantilever beam is a unique situation in that the cantilever tip is
an antinode for all of the beam’s undamped modes, a situation not present in many other
structural configurations. A second study should involve the use the weighted spatial
average mean square motion as an optimization criterion for emphasis of a particular
region of spatial points over others.
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